2. 4 画像基準点データベースの作成

画像基準点データベースの構築には、市販のデータベースソフトウェアを使用した。浦南ほか（2002）で作成した画像基準点データベースを基に作成しており、テーマビル構造版はそのまま流用しているが、情報を閲覧する画像基準点を一覧図（配点図）から選択できるようにするなど操作部分を若干改良を加えた。

メインメニューは配点図から画像基準点を選択し、画像基準点情報及び点の記を閲覧することができる。画像基準点情報では、ID、点名、設置場所（住所）、基準点種別及びその場所に設定してある基準点全ての座標値等が記載されている（図2-2）。また、点の位置を示す地形図も合わせて表示している。点の記には代表点の座標値のほか、地形図、現地写真及び空中写真が表示され、印刷して画像上で参照すべき場所を確認することができる（図2-3）。

この画像基準点データベースを用いることにより、当該地区において衛星画像、空中写真画等の精度検証を行うことができ、テストフィールドとして活用できる。

3. 衛星画像を用いて作成したオルソ画像及びDEMの精度検証

広島工業大学がEROS-A1ステレオペア画像を用いてオルソ画像（図2-4）及びDEMを作成した。その際に用いたソフトウェアは、広島工業大学が独自に開発したものである。使用したEROS-A1画像の解像を表2-1に示す。オルソ画像及びDEMの作成に際しては、広島工業大学を含む広島市北部地区を中心とした東西約7km、南北約5kmの範囲である。この範囲は、四国地方の他、標高693mの検出寺の南東斜面や標高320mの鰐ヶ峰などを含んでおり、高さデータの精度検証や、オルソ画像を作成する際の標高による歪み補正の精度などを見上げ上適した地域といえる。なお、標定の際に使用した地上基準点は、同全幅の370点にわたるもので、また、作成されたオルソ画像をジオコーディングした際には、画像基準点の中で比較的平坦に同定できる点が5点を画像周辺及び中心付近から選定し地上基準点として使用した。

3.1 オルソ画像の位置精度検証

オルソ画像の位置精度の検証として、1）画像基準点データベースに用いた点位置精度検証、2）後処理DGPS測量による線位置精度検証、の二通りの方法で検証を行った。それぞれについて結果を示す。

3.1.1 画像基準点データベースを用いた点位置精度検証

EROS-A1画像中に存在する地物の角等の画像基準点30点について、作成したオルソ画像を画面上で座標計測し